Huiswerkbegeleiding Meppel

Wiskunde heb je altijd nodig overal en waar je ook bent.
 
IndexIndex  FAQFAQ  ZoekenZoeken  RegistrerenRegistreren  Inloggen  
Conjuguer les verbes
Nieuwe pagina 12

 


 

Vertaal hier je woorden
Nieuwe pagina 8
Online Rekenen voor HVOs
Nieuwe pagina 10
 
 Reken   Machine1              

Deel | 
 

 Kwadratische vergelijkingen. HAVO 3

Vorige onderwerp Volgende onderwerp Go down 
AuteurBericht
huiswerkbegeleiding
.........
.........
avatar

Aantal berichten : 37
Registration date : 20-04-08

BerichtOnderwerp: Kwadratische vergelijkingen. HAVO 3   di sep 16, 2008 12:29 am

Deze opgaven zijn van Getal & Ruimte. HAVO 3

Bladzijde 15

26 a) Los de vergelijking x- 25 = 0 op zonder de
abc-formule te gebruiken.

Wij kunnen op twee manieren deze vergelijking x- 25 = 0 oplossen
zonder de abc-formule gebruiken.

* Eerst manier : x- 25 = 0, dat
geeft x = 25 = 5 = (-5). dus x = 5 of x = -5 .
** Tweede manier : de formule a - b = ( a - b )( a + b) .
Goed onthouden :
a - b = ( a - b )( a + b)

x- 25 = x- 5 = 0 dat wordt : ( x - 5 )( x + 5 ) = 0,
dus x - 5 = 0 of x + 5 = 0 dus x = -5 of x = 5

b) Los de vergelijking ( x - 1)(x + 3) = 0 op zonder
de abc-formule te gebruiken.
( x - 1)(x + 3) = 0 , dat betekent x - 1 = 0 of x + 3 = 0
dus x = 1 of x = -3

27) Los op. Geef de oplossingen zonodig in twee
decimalen nauwkeurig.

a) x + 6x = 0, eerst de gemeenschappelijke factor buiten
haakjes brengen. x + 6x = x(x +6) = 0
x + 6x = x(x +6) = 0 , dat betekent of
x = 0 of x + 6 = 0 dus x = -6.
b) x + 6x - 7 = 0 , D = 36 + 28 = 64,
x = ( -6 - 8 ):2 = -7 of x = ( -6 + 8 ):2 = 1

c) x + 6x + 7 = 0 , D = 36 - 28 = 8,
x = ( -6 - √8 :2 ≈ -4,41 of x = ( -6 + √8 :2 ≈ -1,59

d) x - 7x = 0, eerst de gemeenschappelijke factor buiten
haakjes brengen. x - 7x = x( x - 7 ) = 0
en dat geeft x = 0 of x - 7 = 0 dus x = 7

e) 6x + 36x - 96 = 0 , het is verstandig eerst alle termen
door 6 te delen. Je krijgt dan x + 6x - 16
of wel (x+ 8 ( x - 2) = 0 dus x + 8 = 0
of x - 2 =0 dus x = -8 of x = 2

f) x + 6 = 0, dat geeft x = -6 <0 , dus er zijn geen oplossingen,
want een kwadraat is nooit een negatief getal.

g) -x +7x + 6 = 0, D = 49 + 24 = 73, x = (-7+√73):-2 ≈ -0,77
of x = (-7- √73):-2 ≈ 7,77

h) 7x - 14x - 21 = 0,het is verstandig eerst alle termen
door 7 te delen. Je krijgt dan : x- 2x - 3 = 0,
of wel (x + 1)(x- 3) = 0 dus x + 1 = 0
of x - 3 = 0 ,en dat geeft x = -1 of x = 3

Bladzijde 16

28 ) Los op . Geef de oplossingen zonodig in twee decimalen nauwkeurig.

a) -x +3x + 1 = 0, D = 9 + 4 = 13,
x = (-3 + √13):-2 ≈ -0,30 of x = (-3 - √13):-2 ≈ 3,30

b) 4 x - 8x = 0 , het is verstandig eerst alle termen
door 4 te delen en daarna de gemeenschappelijke factor
buiten haakjes brengen ,
Je krijgt dan 4 x - 8x = x -2x = x(x - 2) = 0 dus x = 0 of x = 2

c) x + 1 = 2x , dat wordt x - 2x + 1 =0 , je moet onthouden
[ ( a - b) = a - 2ab + b ] ,deze formule toepassen en je krijgt:
x- 2x + 1 = ( x - 1 ) = 0 , dus x - 1 = 0 , dus x = 1

d) 4 x - 8x - 60 = 0 ,eerst alle termen door 4 delen. Je krijgt

dan x - 2x - 15 = 0, of wel x - 2x - 15 = (x + 3)(x - 5) = 0 ,
dus x + 3 = 0 of x - 5 = 0 dus x = -3 of x = 5

e) 3x-1=2x,[size=9]dat wordt 2x-3x+1= 0 ,D =9 - 8 =1,
x = (3 - 1):4 = of x = (3 + 1):4 = 1

f) x + 5x = 12, eerst vermenigvuldig je alle termen met 2.
Je krijgt x + 10x = 24 en dat wordt x+10x-24 =0
of wel (x+12)(x-2) = 0
dus x+12 = 0 of x - 2 = 0, x = -12 of x = 2

g) (x - 2)(x - 3) = 20 , dat wordt x - 3x - 2x + 6 -20 = 0 ,
en je krijgt x - 5x -14 = 0 of wel (x + 2)(x - 7) = 0 ,
dus x + 2 = 0 of x - 7 = 0 , dus x = -2 of x = 7

h) (x - 2)(x - 3) = 0 , dus x - 2 = 0 of x - 3 = 0 , dus x = 2 of x = 3
Terug naar boven Go down
Profiel bekijken
 
Kwadratische vergelijkingen. HAVO 3
Vorige onderwerp Volgende onderwerp Terug naar boven 
Pagina 1 van 1

Permissies van dit forum:Je mag geen reacties plaatsen in dit subforum
Huiswerkbegeleiding Meppel :: Uw eerste categorie :: Voortgezet onderwijs derde jaar-
Ga naar: